“RelaxLoss: Defending Membership Inference Attacks without Losing Utility”
In: International Conference on Representation Learning (ICLR), 2022
[Rahimian1] Shadi Rahimian, Raouf Kerkouche, Ina Kurth, Mario Fritz
“Practical Challenges in Differentially-Private Federated Survival Analysis of Medical Data”
In: Conference on Health, Inference, and Learning (CHIL), 2022
[Liu1] Yugeng Liu, Rui Wen, Xinlei He, Ahed Salem, Zhikun Zhang, Michael Backes, Emiliano De Cristofaro, Mario Fritz, Yang Zhang
“ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models”
In: USENIX Security Symposium (USENIX Security), 2022
[Zhang2] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, Yang Zhang
“Inference Attacks Against Graph Neural Networks”
In: USENIX Security Symposium (USENIX Security), 2022
[Salem2] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, Yang Zhang
“Dynamic Backdoor Attacks Against Machine Learning Models”
In: IEEE European Symposium on Security and Privacy (EuroS&P), 2022
[Shen1] Yun Shen, Xinlei He, Yufei Han, Yang Zhang
“Model Stealing Attacks Against Inductive Graph Neural Networks”
In: IEEE Symposium on Security and Privacy (S&P), 2022
[Salem1] Ahmed Salem, Michael Backes, Yang Zhang
“Get a Model! Model Hijacking Attack Against Machine Learning Models”
In: Annual Network and Distributed System Security Symposium (NDSS), 2022
[Zhou1] Junhao Zhou, Yufei Chen, Chao Shen, Yang Zhang
“Property Inference Attacks Against GANs”
In: Annual Network and Distributed System Security Symposium (NDSS), 2022
[Chen] Dingfan Chen, Ning Yu, Mario Fritz
“RelaxLoss: Defending Membership Inference Attacks without Losing Utility”
In: International Conference on Representation Learning (ICLR), 2022
[Coupette] Corinna Coupette, Sebastian Dalleiger, Jilles Vreeken
“Differentially Describing Groups of Graphs”
In: American Association for Artificial Intelligence (AAAI), 2022
[Kalofolias] Janis Kalofolias, Jilles Vreeken
“Naming the most anomalous cluster in Hilbert Space for structures with attribute information” In: American Association for Artificial Intelligence (AAAI), 2022
[He1] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, Yang Zhang
“Stealing Links from Graph Neural Networks”
In: USENIX Security Symposium (USENIX Security), 2021
[Chen3] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, Yang Zhang
“When Machine Unlearning Jeopardizes Privacy”
In: ACM SIGSAC Conference on Computer and Communications Security (CCS), 2021
[He3] Xinlei He and Yang Zhang
“Quantifying and Mitigating Privacy Risks of Contrastive Learning”
In: ACM SIGSAC Conference on Computer and Communications Security (CCS), 2021
[Zhang1] Minxing Zhang, Zhaochun Ren, Zihan Wang, Pengjie Ren, Zhumin Chen, Pengfei Hu, Yang Zhang
“Membership Inference Attacks Against Recommender Systems”
In: ACM SIGSAC Conference on Computer and Communications Security (CCS), 2021
[Li1] Zheng Li and Yang Zhang
“Membership Leakage in Label-Only Exposures”
In: ACM SIGSAC Conference on Computer and Communications Security (CCS), 2021
[Mian1] Osman Mian, Alexander Marx, Jilles Vreeken
“Discovering Fully Directed Causal Networks”
In: American Association for Artificial Intelligence (AAAI), 2021
Link
[He21] Yang He, Hui-Po Wang, Maximilian Zenk, Mario Fritz
“CosSGD: Communication-Efficient Federated Learning with a Simple Cosine-Based Quantization”
In: NeurIPS Workshop on New Frontiers in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership, 2021
[Oestreich21] Marie Oestreich, Dingfan Chen, Joachim L. Schultze, Mario Fritz, Matthias Becker
“Privacy considerations for sharing genomics data Journal”
In: EXCLI Journal, 2021
[Alamati1] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Sihang Pu
“Laconic Private Set Intersection and Applications”
In: Theory of Cryptography Conference, 2021
Link
[Branco1] Pedro Branco, Nico Döttling, Sihang Pu
“Multiparty Cardinality Testing for Threshold Private Set Intersection”
In: Public Key Cryptography, 2021
Link
[Brakerski1] Zvika Brakerski and Nico Döttling
“Lossiness and Entropic Hardness of Ring-LWE”
In: Theory of Cryptography Conference, 2020
Link
[Brakerski2] Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, Giulio Malavolta
“Constant-Ciphertext-Rate Non-Committing Encryption from Standard Assumptions”
In: Theory of Cryptography Conference, 2020
Link
[Chen1] Dingfan Chen, Tribhuvanesh Orekondy, Mario Fritz
“GS-WGAN: A gradient-sanitized approach for learning differentially private generators”
In: Advances in Neural Information Processing Systems 33 (NeurIPS), 2020
Link
[Chen2] Dingfan Chen, Ning Yu, Yang Zhang, Mario Fritz
“GAN-Leaks: A Taxonomy of Membership Inference Attacks against GANs”
In: ACM Conference on Computer and Communications Security (CCS) , 2020
Link
[Dalleiger1] Sebastian Dalleiger and Jilles Vreeken
“Explainable Data Decompositions”
In: American Association for Artificial Intelligence (AAAI), 2020
Link
[Dalleiger2] Sebastian Dalleiger and Jilles Vreeken
“The Relaxed Maximum Entropy Distribution and its Application to Pattern Discovery”
In: IEEE International Conference on Data Mining (ICDM), 2020
Link
[Stammler1] Sebastian Stammler, Tobias Kussel, Phillipp Schoppmann, Florian Stampe, Galina Tremper, Stefan Katzenbeisser, Kay Hamacher, Martin Lablans
“Mainzelliste SecureEpiLinker (MainSEL): Privacy-Preserving Record Linkage using Secure Multi-Party Computation”
In: Bioinformatics, 2020
Tobias Lorenz; Marta Kwiatkowska; Mario Fritz
Backdoor Attacks on Network Certification via Data Poisoning Technical Report
Link
ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training
Hui-Po Wang, Sebastian U. Stich, Yang He, Mario Fritz
Link
Jan Henning Behrens et al.
Sachbearbeitung und künstliche Intelligenz: Forschungsstand, Einsatzbereiche und Handlungsfelder
Band 4, Serie “Automatisierung und Unterstützung in der Sachbearbeitung mit Künstlicher Intelligenz”, acatech, 2021
Yang He, Maximilian Zenk, and Mario Fritz
CosSGD: Nonlinear Quantization for Communication-efficient Federated Learning
Technical Report, arXiv:2012.08241, 2020
Link
Yugeng Liu, Rui Wen, Xinlei He, Ahemd Salem, Zhikun Zhang, Michael Backes, Emiliano De Cristofaro, Mario Fritz, and Yang Zhang
ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models
Technical Report, arXiv:2102.02551, 2021.
Link
Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang
When Machine Unlearning Jeopardizes Privacy
Technical Report, arXiv:2005.02205, 2020.
Link
Jan Henning Behrens et al.
Sachbearbeitung und künstliche Intelligenz: Forschungsstand, Einsatzbereiche und Handlungsfelder. Band 4, Serie “Automatisierung und Unterstützung in der Sachbearbeitung mit Künstlicher Intelligenz”, acatech, 2021.
Link
[FeTS] Challenge on federated brain tumor segmentation accepted at MICCAI 2021 (doi: 10.5281/zenodo.4573127)